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Abstract32

A vertex subset S of a graph G is a general position set of G if no vertex33

of S lies on a geodesic between two other vertices of S. The cardinality34

of a largest general position set of G is the general position number (gp-35

number) gp(G) of G. The gp-number is determined for some families of36

Kneser graphs, in particular for K(n, 2), n ≥ 4, and K(n, 3), n ≥ 9. A37

sharp lower bound on the gp-number is proved for Cartesian products of38

graphs. The gp-number is also determined for joins of graphs, coronas over39

graphs, and line graphs of complete graphs.40

Keywords: general position set, Kneser graphs, Cartesian product of graphs,41

corona over graphs, line graphs.42

2010 Mathematics Subject Classification: 05C12, 05C69, 05C76.43

1. Introduction44

A general position problem in graph theory is to find a largest set of vertices that45

are in a general position. More precisely, if G = (V (G), E(G)) is a graph, then46

S ⊆ V (G) is a general position set if for any triple of pairwise different vertices47

u, v, w ∈ S we have dG(u, v) 6= dG(u,w) + dG(w, v), where dG is the standard48

shortest path distance function in the graph G. A set S is called a gp-set of G if49

S has the largest cardinality among the general position sets of G. The general50

position number (gp-number for short) gp(G) of G is the cardinality of a gp-set51

of G.52

This concept was introduced—under the present name—in [14] in part moti-53

vated by the Dudeney’s 1917 no-three-in-line problem [5] (see [12, 16, 20] for re-54

cent related results) and by a corresponding problem in discrete geometry known55

as the general position subset selection problem [7, 19]. Independently geodetic56

irredundant sets were earlier introduced in [21], a concept which is equivalent to57

the general position sets.58

We will use n(G) to denote the order of G. In [21] graphs G with gp(G) ∈59

{2, n(G)−1, n(G)} were classified and some other results presented. Then, in [14],60

several general bounds on the gp-number were presented, proved that set of61

simplicial vertices of a block graph form its gp-set, and proved that the problem62

is NP-complete in general. The gp-number of a large class of subgraphs of the63

infinite grid graph and of the infinite diagonal grid has been determined in [15].64

In the paper [1] a formula for the gp-number of graphs of diameter 2 was given65

which in particular implies that gp(G) of a cograph G can be determined in66

polynomial time. Moreover, a formula for the gp-number of the complement of a67

bipartite graph was also deduced. The main result of [1] gives a characterization68
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of general position sets (see Theorem 1.2 below). The general position problem69

has also been connected with the so-called strong resolving graphs [11].70

We proceed as follows. In the rest of this section further definitions are given,71

and known results needed are stated. In Section 2 the gp-number is determined72

for some families of Kneser graphs. In particular, if n ≥ 7, then gp(K(n, 2)) =73

n − 1 and if n ≥ 9, then gp(K(n, 3)) =
(
n−1
2

)
. In the subsequent section the gp-74

number of Cartesian products is bounded from below. The bound is proved to be75

sharp on the Cartesian product of two complete graphs. We conclude the paper76

with Section 4 in which the gp-number is determined for joins of graphs, coronas77

over graphs, and line graphs of complete graphs, where the first two results are78

stated as functions of the corresponding invariants of factor graphs.79

For a positive integer n let [n] = {1, . . . , n}. Graphs in this paper are finite,80

undirected, and simple. The maximum distance between all pairs of vertices of81

G is the diameter, diam(G) of G. An u, v-path of length dG(u, v) is called an82

u, v-geodesic. The interval IG(u, v) between vertices u and v of a graph G is83

the set of vertices x such that there exists a u, v-geodesic which contains x. A84

subgraph H of G is convex if for every u, v ∈ V (H), all the vertices from IG(u, v)85

belong to V (H).86

The size of a largest complete subgraph of a graph G and the size of its largest87

independent set are denoted by ω(G) and α(G), respectively. The complement88

of a graph G will be denoted with G and the subgraph of G induced by S ⊆89

V (G) with G[S]. Let η(G) denote the maximum order of an induced complete90

multipartite subgraph of G. We will use the following result.91

Theorem 1.1. [1, Theorem 4.1] If diam(G) = 2, then gp(G) = max{ω(G), η(G)}.92

To complete the introduction we recall a characterization of general position93

sets from [1], for which some preparation is required. If G is a connected graph,94

S ⊆ V (G), and P = {S1, . . . , Sp} a partition of S, then P is distance-constant95

(named “distance-regular” in [9, p. 331]) if for any i, j ∈ [p], i 6= j, the distance96

dG(u, v), where u ∈ Si and v ∈ Sj , is independent of the selection of u and v. This97

distance is then the distance dG(Si, Sj) between the parts Si and Sj . A distance-98

constant partition P is in-transitive if dG(Si, Sk) 6= dG(Si, Sj) + dG(Sj , Sk) holds99

for arbitrary pairwise different i, j, k ∈ [p]. Then we have:100

Theorem 1.2. [1, Theorem 3.1] Let G be a connected graph. Then S ⊆ V (G) is a101

general position set if and only if the components of G[S] are complete subgraphs,102

the vertices of which form an in-transitive, distance-constant partition of S.103

Theorem 1.2 is illustrated in Fig. 1 on the Petersen graph P . It is known104

(cf. [14]) that gp(P ) = 6, the end-vertices of the red edges form its gp-set. Note105

that these six vertices induce three (complete subgraphs) K2, and that the dis-106

tance between each pair of these complete subgraphs is 2.107
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Figure 1. A gp-set of the Petersen graph

2. Kneser graphs108

If n and k are positive integers with n ≥ k, then the Kneser graph K(n, k) has109

as vertices all the k-element subsets of the set [n], vertices being adjacent if the110

corresponding sets are disjoint. For more on Kneser graph see [2, 3, 17, 22].111

In this section we are interested in the gp-number of Kneser graphs, for which112

the following result will be useful.113

Theorem 2.1. [22, Theorem 1] If k ≥ 1 and n ≥ 2k + 1, then diam(K(n, k)) =114

⌈(k − 1)/(n − 2k)⌉+ 1.115

Recall also that the celebrated Erdős-Ko-Rado theorem [6] asserts that if116

n ≥ 2k, then α(K(n, k)) ≤
(
n−1
k−1

)
, cf. also [13, Theorem 6.4].117

In our first result of the section we determine the gp-number of the Kneser118

graphs K(n, 2) as follows.119

Theorem 2.2. If n ≥ 4, then

gp(K(n, 2)) =

{
6; 4 ≤ n ≤ 6,
n− 1; n ≥ 7 .

Proof. Since K(4, 2) = 3K2, clearly we have gp(K(4, 2)) = 6. The Kneser120

graph K(5, 2) is the Petersen graph for which it has been proven in [14] that121

gp(K(5, 2)) = 6.122

We now claim that gp(K(n, 2)) ≤ n−1 for every n ≥ 7, and that gp(K(6, 2)) ≤123

6. For this sake let S be an arbitrary general position set of K(n, 2). By The-124

orem 1.2 the components of K(n, 2)[S] are complete graphs. We distinguish125

the following cases based on the cardinality of a largest component, say H, of126

K(n, 2)[S].127
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Let n(H) ≥ 3, and assume without loss of generality that {1, 2}, {3, 4}, and128

{5, 6} are vertices of H. Then an arbitrary vertex x from V (K(n, 2)) \V (H) can129

have a non-empty intersection with at most two of the vertices {1, 2}, {3, 4}, and130

{5, 6}. This implies that x is adjacent to at least one vertex of H. It follows that131

K(n, 2)[S] has only one (complete) component, and consequently |S| ≤ ⌊n2 ⌋.132

Let n(H) = 2. Assume without loss of generality that V (H) = {{1, 2}, {3, 4}}.133

Since no other vertex of S is adjacent with the vertices of K2, the other vertices134

of S must be 2-subsets of [4]. Hence in this case |S| ≤ 6.135

Let n(H) = 1, that is, S is an independent set. Then the Erdős-Ko-Rado136

theorem implies that |S| ≤ n− 1.137

From the above three cases we conclude that gp(K(6, 2)) ≤ 6, and that138

gp(K(n, 2)) ≤ n− 1 holds for every n ≥ 7. It remains to prove that for n ≥ 6 we139

can construct large enough general position sets.140

Suppose that n = 6. Then the six 2-subsets of [4] induce three independent141

edges, hence gp(K(6, 2)) ≥ 6. By the above we conclude that gp(K(6, 2)) = 6.142

Let n ≥ 7. Then by the above, gp(K(n, 2)) ≤ n − 1. On the other hand,143

the set {{1, 2}, {1, 3}, . . . , {1, n}} is an independent set of K(n, 2) of cardinality144

n − 1. Since diam(K(n, 2)) = 2, Theorem 2.1 implies that this independent set145

is a general position set, hence we conclude that gp(K(n, 2)) ≥ n− 1.146

In summary, if n ≥ 7, then gp(K(n, 2)) = n− 1.147

Theorem 2.3. Let n, k ∈ N and n ≥ 3k − 1. If for all t, where 2 ≤ t ≤ k, the
inequality kt

(
n−t
k−t

)
+ t ≤

(
n−1
k−1

)
holds, then

gp(K(n, k)) =

(
n− 1

k − 1

)

.

Proof. Since n ≥ 3k − 1, Theorem 2.1 implies that diam(K(n, k)) = 2.148

Let S be the set of all k-subsets of [n] that contain 1. Clearly, |S| =
(
n−1
k−1

)
149

and S form an independent set of K(n, k). Hence, as diam(K(n, k)) = 2, we infer150

that S is a general position set and consequently gp(K(n, k)) ≥
(
n−1
k−1

)
.151

Let T be a general position set of K(n, k), and let H be a largest component152

of K(n, k)[T ]. By Theorem 1.2 we know that H is a complete subgraph. Let153

n(H) = t. If t > k, then every vertex V (K(n, k))\V (H) must have a neighbor in154

H. This implies that T is the only component of K(n, k)[T ], but then we clearly155

have n(H) ≤
(
n−1
k−1

)
. Hence assume in the rest that t ≤ k.156

If t = 1, then K(n, k)[T ] is a disjoint union of K1s and hence |T | ≤
(
n−1
k−1

)
by157

the Erdős-Ko-Rado theorem.158

Suppose now 2 ≤ t ≤ k. We wish to determine the upper bound on the
number of k-subsets A, such that A ∩B 6= ∅ holds for all B ∈ V (H). Such a set
A must have at least one element from each of the sets B ∈ V (H), and since the

sets B are pairwise disjoint, there are
(
k
1

)t
possibilities to select representatives
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from the sets B ∈ V (H) that are at the same time elements of A. The remaining
k − t elements of A are then selected from a set of cardinality n − t. Therefore,
there exist at most

(
k

1

)(
k

1

)

. . .

(
k

1

)

︸ ︷︷ ︸

t-times

(
n− t

k − t

)

= kt
(
n− t

k − t

)

k-sets A, such that A ∩B 6= ∅ for all B ∈ V (H). Hence,159

|T | ≤ t+ kt
(
n− t

k − t

)

≤

(
n− 1

k − 1

)

,

where the second inequality holds by the theorem’s assumption. We conclude160

that gp(K(n, k)) =
(
n−1
k−1

)
.161

For the Kneser graphs K(n, 3) we have the following result.162

Theorem 2.4. If n ≥ 9, then gp(K(n, 3)) =
(
n−1
2

)
.163

Proof. Let T be a general position set of K(n, 3). By Theorem 1.2, every compo-164

nent of K(n, 3)[T ] is a clique, and let H be a largest such clique. We first prove165

that gp(K(n, 3)) ≤
(
n−1
2

)
(for n ≥ 9), for which we distinguish the following166

cases.167

Case 1: n(H) ≥ 4.168

Let x be an arbitrary vertex from T \ V (H). Since x must contain a vertex from169

each of the sets from V (H) and the latter sets are pairwise disjoint, x would170

contain at least four elements. Since this is not possible, T consists of the single171

clique H. It follows that n(H) ≤ ⌊n/3⌋ ≤
(
n−1
2

)
.172

Case 2: n(H) = 3.173

Let H1, . . . ,Hℓ be the components of K(n, 3)[T ] of cardinality 3. As the sets174

(=vertices) from every Hi are pairwise disjoint, we may without loss of generality175

assume that H1 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}. This in particular implies that176

n ≥ 9. Then each vertex from every Hi contains elements from [9]. Suppose177

now that the pair {1, 2} appears in some vertex y different from {1, 2, 3}. Then178

y is adjacent to at least one of the vertices {4, 5, 6} and {7, 8, 9}. By symmetry179

it follows that each pair of elements {i, j} ∈
([9]
2

)
appears in at most one vertex180

from V (H1) ∪ · · · ∪ V (Hℓ). Since there are 36 such pairs it follows that ℓ ≤ 4.181

First assume that ℓ = 4. By the argument above, T contains no other vertex182

but those in H1, . . . ,H4. Then |T | = 12 ≤
(
n−1
2

)
because n ≥ 9. Let next ℓ = 3.183

Then at most three vertices can have non-empty intersection with all the vertices184

from H1,H2,H3. Again, |T | ≤
(
n−1
2

)
. Suppose next that ℓ = 2. Then each of185

the cliques allows 27 further vertices to belong to T . The list of possible vertices186
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intersects in only 6 vertices that can lie in T besides the vertices from the two H1187

and H2. Finally, assume that ℓ = 1. Then again 27 other vertices can belong to188

T . Every pair of disjoint vertices from this set of 27 vertices excludes one vertex189

that has empty intersection with both sets. Therefore, at most 18 vertices can190

lie in T besides the vertices of the unique K3, so at most 21 in total. Since n ≥ 9191

we again conclude that |T | ≤
(
n−1
2

)
.192

Case 3: n(H) = 2.193

We may without loss of generality assume that H = {{1, 2, 3}, {4, 5, 6}} is a com-194

ponent of K(n, 3)[T ]. Every other vertex of T must have non-empty intersection195

with both vertices x = {1, 2, 3} and y = {4, 5, 6}. The number of 3-subsets of196

[n] that have exactly one element in common with each of x and y is equal to197
(3
1

)(3
1

)
(n − 6). In addition, there exist exactly 18 3-subsets of [n] that have two198

elements in common with one of x and y (and, of course, exactly one element199

with the other vertex). Hence there are precisely 9(n−4) vertices of K(n, 3) that200

have non-empty intersection with both x and y. If follows that |T | ≤ 2+9(n−4).201

To further improve the last inequality, consider arbitrary pairwise different202

integers a, b, c ∈ [n] \ [6]. There are exactly 27 subsets of cardinality 3 which203

contain one of a, b, and c, and have non-empty intersection with x and y, they204

are listed in Table 1.205

A B C

1, 4, a 1, 4, b 1, 4, c 1, 5, a 1, 5, b 1, 5, c 1, 6, a 1, 6, b 1, 6, c
2, 5, b 2, 5, c 2, 5, a 2, 6, b 2, 6, c 2, 6, a 2, 4, b 2, 4, c 2, 4, a
3, 6, c 3, 6, a 3, 6, b 3, 4, c 3, 4, a 3, 4, b 3, 5, c 3, 5, a 3, 5, b

Table 1. 3-subsets containg one of a, b, c ∈ [n] \ [6] and having non-empty intersection
with x and y

Consider the nine sets in part A of Table 1. Since we are in the case n(H) = 2,206

from each of the columns of part A, at most two subsets can lie in T . Moreover,207

if two subsets of a fixed column of part A lie in T , then at most four subsets of208

part A can belong to T . The same conclusion holds for parts B and C of Table 1209

which in turn implies that at most 12 subsets from Table 1 can lie in T . Putting210

it other way, at least 15 vertices from Table 1 do not lie in T . Since a, b, and c211

are arbitrary integers from [n] \ [6], it follows that212

|T | ≤ 2 + 9(n − 4)− 15

⌊
n− 6

3

⌋

.

This implies that |T | ≤
(
n−1
2

)
holds for n ≥ 12. Finally, for n ∈ {9, 10, 11} notice213

that selecting two sets from part A of Table 1 one can select at most 11 sets from214

Table 2.215
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1, 2, 4 1, 2, 5 1, 2, 6 1, 3, 4 1, 3, 5 1, 3, 6 2, 3, 4 2, 3, 5 2, 3, 6
3, 5, 6 3, 4, 6 3, 4, 5 2, 5, 6 2, 4, 6 2, 4, 5 1, 5, 6 1, 4, 6 1, 4, 5

Table 2. Specific 3-subsets

Thus |T | ≤ 2+ 9(n− 4)− 15− 7 and we conclude that |T | ≤
(
n−1
2

)
holds also for216

n ∈ {9, 10, 11}.217

Case 4: n(H) = 1.218

In this case T is an independent set, hence |T | ≤
(
n−1
2

)
holds by the Erdős-Ko-219

Rado theorem.220

We have thus proved that gp(K(n, 3)) ≤
(
n−1
2

)
holds for every n ≥ 9. On221

the other hand, α(K(n, 3)) =
(
n−1
2

)
. By Theorem 2.1 we have diam(K(n, 3)) ≤ 3222

which implies that every independent set of K(n, 3) is a general position set.223

Therefore, gp(K(n, 3)) ≥
(
n−1
2

)
.224

To conclude the section we add (while preparing the revised version) that225

very recently more general developments on the gp-number of Kneser graphs226

were reported in [18].227

3. Cartesian products228

In this section we prove a general lower bound on the gp-number of Cartesian229

product graphs. The bound is sharp as follows from the exact gp-number of the230

Cartesian product of two complete graphs.231

TheCartesian product G�H of graphsG andH has the vertex set V (G�H) =232

V (G)× V (H) and the edge set E(G�H) = {(g, h)(g′ , h′) : gg′ ∈ E(G) and h =233

h′, or, g = g′ and hh′ ∈ E(H)}. If (g, h) ∈ V (G�H), then the G-layer Gh
234

through the vertex (g, h) is the subgraph of G�H induced by the vertices235

{(g′, h) : g′ ∈ V (G)}. Similarly, the H-layer gH through (g, h) is the sub-236

graph of G�H induced by the vertices {(g, h′) : h′ ∈ V (H)}. It is well-237

known that for given vertices u = (g1, h1) and v = (g2, h2) of G�H we have238

dG�H(u, v) = dG(g1, g2)+dH(h1, h2). For more on the Cartesian product see the239

book [8].240

The announced lower bound reads as follows.241

Theorem 3.1. If G and H are connected graphs, then

gp(G�H) ≥ gp(G) + gp(H)− 2 .
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Proof. Let SG ⊆ V (G) and SH ⊆ V (H) be gp-sets of G and H, respectively.
Let g ∈ SG and h ∈ SH . We claim that

S = ((SG × {h}) ∪ ({g} × SH)) \ {(g, h)}

is a general position set in G�H.242

Let u, v ∈ S. Suppose first that u and v lie in the layer Gh. Since layers in243

Cartesian products are convex, it follows that an arbitrary shortest u, v-path Puv244

lies completely in Gh. Since Gh is isomorphic to G, it follows that V (Puv) ∩ S =245

{u, v}. Hence (SG×{h})\{(g, h)} is a general position set in G�H. Analogously,246

({g} × SH) \ {(g, h)} is a general position set.247

Suppose now that u = (g′, h) ∈ Gh, v = (g, h′) ∈ gH, and let Puv be a248

shortest u, v-path in G�H. Suppose on the contrary that Puv contains some249

vertex w of S different from u and v. We may without loss of generality assume250

that w = (g′′, h). Clearly, g′′ 6= g′. Furthermore, since (g, h) /∈ S, we also251

have g′′ 6= g. Since the projection P ′ of Puv on Gh is a shortest path between252

u = (g′, h) and (g, h) we infer that P ′ passes through the vertex (g′′, h). This in253

turn implies that there exists a shortest g′, g-path in G that contains g′′. This is254

a contradiction since g, g′, and g′′ are pairwise different vertices.255

We have thus proved that S is a general position set. Since |S| = |SG| +256

|SH | − 2 = gp(G) + gp(H)− 2 we are done.257

The bound of Theorem 3.1 is sharp as demonstrated by the equality case of258

the following result.259

Theorem 3.2. If k ≥ 2 and n1, . . . , nk ≥ 2, then

gp(Kn1
� · · · �Knk

) ≥ n1 + · · ·+ nk − k .

Moreover, gp(Kn1
�Kn2

) = n1 + n2 − 2.260

Proof. To simplify the notation set G = Kn1
� · · · �Knk

. Let further V (Kn) =261

[n], so that V (G) = {(j1, . . . , jk) : ji ∈ [ni], i ∈ [k]}.262

For i ∈ [k] set Xi = {(1, . . . , 1, j, 1, . . . , 1) : j ∈ {2, . . . , ni}}, where j is in the263

ith coordinate. Clearly, |Xi| = ni − 1. We claim that X = ∪i∈[k]Xi is a general264

position set of G.265

Let u, v, and w be pairwise different vertices of X, and let u ∈ Xp, v ∈ Xq,266

and w ∈ Xr. If p = q = r, then u, v, and w are in the same Knp-layer and267

thus induce a triangle. So they are in a general position. Suppose next that268

p = q 6= r. Then dG(u, v) = 1, dG(u,w) = 2, and dG(v,w) = 2, hence these269

three vertices are again in a general position in G. Finally, if p 6= q 6= r, then270

dG(u, v) = dG(u,w) = dG(v,w) = 2, and we have the same conclusion. This271

proves the claim.272
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Since X is a general position set and, clearly, |X| =
∑

i∈k |Xi| = n1 + · · · +273

nk − k, the lower bound is proved.274

Let now k = 2, so that G = Kn1
�Kn2

and V (G) = {(i, j) : i ∈ [n1], j ∈275

[n2]}. Since diam(G) = 2, Theorem 1.1 applies. Clearly, ω(G) = max{n1, n2}.276

In the rest we are going to prove that η(G) = n1+n2− 2. We will prove this277

assertion by induction on n1 + n2, the basic case n1 = n2 = 2 being clear. Note278

also that if n2 = 2 and n1 ≥ 3, then the result also holds, that is, η(G) = n1 in279

this case.280

Let H be a complete multipartite subgraph of G and let X1, . . . ,Xk be the281

partite sets of H. We first claim that each Xi is a subset of the vertex set of282

some layer. If |X1| = 1 there is nothing to prove. Hence let |X1| ≥ 2 and suppose283

without loss of generality that (1, 1) ∈ X1. Since X1 is an independent set, we284

have ({2, . . . , n1} × {2, . . . , n2}) ∩X1 = ∅. We may further suppose without loss285

of generality that X1 contains another vertex from K1
n1
, say (i, 1). Since (i, 1) is286

adjacent to all the vertices from {1}×{2, . . . , n2}, we conclude that X1 ⊆ V (K1
n1
).287

This proves the claim, that is, each Xi is a subset of the vertex set of some layer.288

By the claim above we may without loss of generality assume that X1 =289

{(1, 1), . . . , (r, 1)}, where r ∈ [n1]. We now distinguish the following cases.290

Case 1: r = n1.291

In this case H consists of a single complete component, that is, k = 1. Hence292

n(H) = n1 and since n2 ≥ 2, we infer that n(H) ≤ n1 + n2 − 2.293

Case 2: r < n1.294

In this case none of the vertices from ({1, . . . , r}×{2, . . . , n2})∪({r+1, . . . , n1}×295

{1}) lies in H. If follows that X2, . . . ,Xk lie in the subgraph induced by {r +296

1, . . . , n1} × {2, . . . , n2}. The latter subgraph is isomorphic to Kn1−r �Kn2−1.297

Case 2.1: n1 − r ≥ 2 and n2 − 1 ≥ 2.
In this subcase the induction hypothesis implies that

η(Kn1−r �Kn2−1) = (n1 − r) + (n2 − 1)− 2 = n1 + n2 − r − 3 .

It follows that

n(H) ≤ (n1 + n2 − r − 3) + r = n1 + n2 − 3 .

Case 2.2: n1 − r ≤ 1.298

In this subcase we have n1 − r = 1 and k = 2. Then X2 ⊆ {(n1, 2), . . . , (n1, n2)}.299

Moreover, the set {(1, 1), . . . , (n1 − 1, 1)} ∪ {(n1, 2), . . . , (n1, n2)} induces a com-300

plete bipartite graph of G which is of order (n1 − 1) + (n2 − 1) = n1 + n2 − 2.301

Case 2.3: n2 − 1 ≤ 1.302

This means that n2 ≤ 2, and so n2 = 2, the case that was already considered.303
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In all the above cases we have thus proved that a complete multipartite304

subgraph of G is of order at most n1 + n2 − 2. Moreover, in Case 2.2 we have305

also found a complete multipartite subgraph of G of order exactly n1 + n2 − 2.306

We can conclude that η(G) = n1 + n2 − 2.307

Note that the lower bound of Theorem 3.2 for at least three factors is stronger308

than the bound one can deduce by induction from Theorem 3.1. However, as309

recently proved in [10] by a probabilistic argument, the bound of Theorem 3.2310

becomes very non-sharp as k grows.311

4. The gp-number of some graph operations312

In this section we consider the gp-number of joins of graphs, of coronas over313

graphs, and of line graphs. For this sake the following concept will be useful.314

Complete subgraphs Q and Q′ in a graph G are independent if dG(u, u
′) ≥ 2 for315

every u ∈ V (Q) and every u′ ∈ V (Q′). (This concept has been very recently316

introduced and applied in [4].) Note that the complete subgraphs from Theo-317

rem 1.2 are independent by definition. Setting ρ(G) to denote the maximum318

number of vertices in a union of pairwise independent complete subgraphs of G,319

we have:320

Theorem 4.1. If diam(G) ∈ {1, 2}, then gp(G) = ρ(G).321

Proof. The assertion is clear if diam(G) = 1, that is, if G is a complete graph.322

Let G be a graph of diameter 2. Clearly, ρ(G) ≥ ω(G), and ρ(G) ≥ η(G).323

Theorem 1.1 thus implies that ρ(G) ≥ gp(G). Conversely, the ρ(G) vertices from324

a largest union of pairwise independent cliques form a general position set by325

Theorem 1.2. Therefore, gp(G) ≥ ρ(G).326

The reason that in Theorem 4.1 gp(G) is expressed only with ρ(G), while in327

Theorem 1.1 two invariants are used, is that ρ(G) encapsulates ω(G) while η(G)328

does not.329

4.1. Joins and coronas330

If G and H are disjoint graphs, then the join G+H of G and H is the graph331

with the vertex set V (G + H) = V (G) ∪ V (H), and the edge set E(G + H) =332

E(G) ∪ E(H) ∪ {xy : x ∈ V (G), y ∈ V (H)}. If both G and H are complete, so333

it is G + H, and hence gp(G + H) = gp(Kn(G) + Kn(H)) = gp(Kn(G)+n(H)) =334

n(G +H). Otherwise, that is, if at least one of G and H is not complete, then335

diam(G+H) = 2. In this case we have:336
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Proposition 4.2. If G and H are graphs, then337

gp(G+H) = max{ω(G) + ω(H), η(G), η(H)}

= max{ω(G) + ω(H), ρ(G), ρ(H)} .

Proof. Since diam(G+H) = 2, Theorem 1.1 applies. It is straightforward that338

ω(G +H) = ω(G) + ω(H), and that η(G +H) = max{η(G), η(H)}. Hence the339

first equality.340

A complete subgraph Q of G +H lies completely in G, or completely in H341

or is a join of a complete subgraph of G, and a complete subgraph of H. If Q is342

of the latter form, then it is at distance 1 to every other complete subgraph of343

G+H. If follows that ρ(G+H) = max{ω(G) + ω(H), ρ(G), ρ(H)}. The second344

equality then follows by Theorem 4.1.345

Let G and H be graphs where V (G) = {v1, . . . , vn(G)}. The corona G ◦ H346

of graphs G and H is obtained from the disjoint union of G, and n(G) disjoint347

copies of H, say H1, . . . ,Hn(G), where for all i ∈ [n(G)], the vertex vi ∈ V (G) is348

adjacent to each vertex of Hi.349

Theorem 4.3. If G is a connected graph with n(G) ≥ 2, and H is a graph, then

gp(G ◦H) = n(G)ρ(H) .

Proof. Let V (G) = {v1, . . . , vn(G)}, and let H1, . . . ,Hn(G) be the corresponding350

copies of H in G ◦ H. Note first that the statement is clear for the corona351

K2 ◦K1 = P4. So we may assume in the rest that if n(G) = 2, then n(H) ≥ 2.352

Let S be a gp-set of G◦H. Suppose first that S∩V (G) 6= ∅. We may assume353

without loss of generality that v1 ∈ S. If there exists a vertex w ∈ S ∩ V (H1),354

w 6= v1, then for any vertex x ∈ V (G ◦H) \ (V (H1)∪ {v1}), the vertex v1 lies on355

a shortest w, x-path. Consequently, S ⊆ V (H1) ∪ {v1}. Suppose that n(G) = 2.356

If x ∈ V (H1) and y ∈ V (H2), then dG◦H(x, y) = 3. It follows that the union of a357

general position set of H1 and a general position set of H2 is a general position358

set of G ◦ H. But then the union of a gp-set of H1 and a gp-set of H2 has359

cardinality bigger that S because gp(H) ≥ 2, and if n(G) ≥ 3, then we get a360

similar contradiction. It follows that if v1 ∈ S, then S ∩ V (H1) = ∅. But then361

S′ = S ∪ {w} \ {v1}, where w, is an arbitrary vertex of H1 is also a gp-set. In362

summary, we have proved that we may without loss of generality assume that363

S ∩ V (G) = ∅.364

So let now S be a gp-set of G ◦ H with S ∩ V (G) = ∅. By Theorem 1.2,365

the components of (G ◦H)[S] are independent complete graphs. Let H ′
i be the366

subgraph of G◦H induced by the vertices from V (Hi)∪{vi}. Since diam(H ′
i) ≤ 2,367

Theorem 4.1 implies that S restricted to Hi has at most ρ(H) vertices. On the368

other hand, since independent complete subgraphs of Hi are pairwise at distance369
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2, they form (in view of Theorem 1.2) a general position set. But then taking such370

complete subgraphs in every Hi yields a general position set of order n(G)ρ(H).371

372

4.2. Line graphs of complete graphs373

If G is a graph, then the line graph L(G) of G is the graph with V (L(G)) =374

E(G), two different vertices of L(G) being adjacent if the corresponding edges375

share a vertex in G.376

Theorem 4.4. If n ≥ 3, then

gp(L(Kn)) =

{
n; 3 | n ,
n− 1; 3 ∤ n .

Proof. Let n ≥ 3 and V (Kn) = [n]. To simplify the notation set Gn = L(Kn).377

Since ω(Gn) = n− 1, we have gp(Gn) ≥ n− 1.378

We next claim that gp(T (n)) ≤ n. Let S be a gp-set ofGn and letKn1
, . . . ,Knk

be the connected components of Gn[S], so that gp(Gn) = |S| = n1 + · · ·+ nk. A
vertex u of Gn corresponds to an edge of Kn, that is, to a pair of vertices {j, j′}
and we may identify u with {j, j′}. Using this convention, for i ∈ [k] set

Xi =
⋃

{j,j′}∈V (Kni
)

{j, j′} .

Since the complete subgraphs Kni
are pairwise independent, it follows that if

i 6= i′, then Xi ∩Xi′ = ∅. Setting xi = |Xi| we infer that xi ≥ ni and hence

gp(Gn) = |S| = n1 + · · ·+ nk ≤ x1 + · · ·+ xk ≤ n , (1)

and the claim is proved.379

If 3 | n, then

S = {{3i + 1, 3i + 2}, {3i + 1, 3i+ 3}, {3i + 2, 3i+ 3} : 0 ≤ i ≤
n

3
− 1}

is a gp-set of Gn, and hence gp(Gn) = n.380

Suppose now that 3 ∤ n. Then at least one ni 6= 3 and for it we have ni < xi.381

In view of (1) this means that gp(Gn) < n. As we have already observed that382

gp(Gn) ≥ n− 1, the argument is complete.383
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[9] M. M. Kanté, R. M. Sampaio, V. F. dos Santos, J. L. Szwarcfiter, On the406

geodetic rank of a graph, J. Comb. 8 (2017) 323–340.407
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